Presentation about Deep Learning

--- Zhongwu xie

Contents

1.Brief introduction of Deep learning.

2.Brief introduction of Backpropagation.

3. Brief introduction of Convolutional Neural Networks.

Deep learning

I. Introduction to Deep Learning

Deep learning is a particular kind of machine learning that achieves great power and flexibility by learning to represent the world as a nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more abstract representations computed in terms of less abstract ones.---lan Goodfellow

I. Introduction to Deep Learning

In the plot on the left, A Venn diagram showing how deep learning is a kind of representation learning, which is in turn of machine learning. In the plot on the left, the graph shows that deep learning has Multilayer.

I. What is Deep Learning

- Data: $(x_i, y_i) \quad 1 \le i \le m$
- Model: ANN
- Criterion:
 - -Cost function: L(y, f(x))
 - -Empirical risk minimization: $R(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(y_i, f(x_i, \theta))$
 - -Regularization: $||w||, ||w||^2$, Early Stopping , Dropout -objective function: $mini R(\theta) + \lambda * (Regularization Function)$
- Algorithm : BP Gradient descent

Learning is cast as optimization.

II . Why should we need to learn Deep Learning? --- Efficiency

- Speech Recognition
 - ---The phoneme error rate on TIMIT:

famous Instances : self-driven AlphaGo

Basing on HMM-GMM in 1990s : about 26%

Restricted Boltzmann machines(RBMs) in 2009: 20.7%; LSTM-RNN in 2013:17.7%

Computer Vision

---The Top-5 error of ILSVRC 2017 Classification Task is 2.251%, while human being' s is 5.1%.

- Natural Language Processing
 - ---language model (n-gram) Machine translation
- Recommender Systems

---Recommend ads , social network news feeds , movies , jokes , or advice from experts etc.

Backward propagation

I. Introduction to Notation

$$z = w^T x + b$$
$$a = g(z)$$

 w_{jk}^{l} is the weight from the j^{th} neuron in the $(l-1)^{th}$ layer to the k^{th} neuron in the l^{th} layer.

I. Introduction to Forward propagation and Notation

$$\begin{aligned} z_1^{[1]} &= w_1^{[1]T} x + b_2^{[1]}, & a_1^{[1]} = \sigma(z_1^{[1]}) \\ z_2^{[1]} &= w_2^{[1]T} x + b_2^{[1]}, & a_2^{[1]} = \sigma(z_2^{[1]}) \\ z_3^{[1]} &= w_3^{[1]T} x + b_3^{[1]}, & a_3^{[1]} = \sigma(z_3^{[1]}) \\ z_4^{[1]} &= w_4^{[1]T} x + b_4^{[1]}, & a_4^{[1]} = \sigma(z_4^{[1]}) \end{aligned}$$

II. Backward propagation.

---the chain rule

If
$$x = f(w), y = f(x), z = f(y)$$

So, $\frac{\partial z}{\partial w} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w}$

---the functions of neural network are same as the above function, so we can use the chain rule to the gradient of the neural network.

$$x \xrightarrow{w} z = w^T x + b \xrightarrow{a} a = \sigma (z) \xrightarrow{L(a, y)} L(a, y)$$

II. Backward propagation.

II. Summary : The Backpropagation

The backpropagation algorithm is a clever way of keeping track of small perturbations the weights (and biases) as they propagate through the network, reach the output, and then affect the cost. ---Michael Nielsen

II. Summary : The Backpropagation algorithm

1.Input *x*:Set the corresponding activation for the input layer.

2.Feedforward : For each l = 2, 3, ..., L compute $z^{[l]} = w^{[l]} a^{[l-1]} + b^{[l]}$ and $a^{[l]} = \sigma(z^{[l]})$. 3.Output error $dz^{[L]} : dz^{[L]} = a^{[L]} - y$.

4.Back propagate the cost error: For each l=L-1,L-2,...2 compute : $dz^{[l]} = (w^{[l+1]})^T dz^{[l+1]} * \sigma'(z^{[l]})$

5.Output : The gradient of the cost function is given by:

$$\frac{dw^{[l]}}{\partial w^{[l]}} = \frac{\partial L(a,y)}{\partial w^{[l]}} = dz^{[l]} a^{[l-1]T} \text{ and } \frac{db^{[l]}}{\partial b^{[l]}} = \frac{\partial L(a,y)}{\partial b^{[l]}} = dz^{[l]}$$

Update the $w_{jk}^{[l]}$ and $b_j^{[l]}$: $w_{jk}^{[l]} = w_{jk}^{[l]} - \alpha \frac{\partial L(a,y)}{\partial w_{jk}^{[l]}}$ $b_j^{[l]} = b_j^{[l]} - \alpha \frac{\partial L(a,y)}{\partial b_j^{[l]}}$

Convolutional Neural Networks

1. Types of layers in a convolutional network.

- -Convolution
- Pooling
- -Fully connected

2.1 Convolution in Neural Network

*

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	-			
/	0	30	30	0
	0	30	30	0
/	0	30	30	0
	0	30	30	0

	10	10	10
*	10	10	10
	10	10	10

1	0	-1
1	0	-1
1	0	-1

=

0

=

2.2 Multiple filters

---Parameter sharing

---Sparsity of connections

- Remove the redundancy information of convolutional layer .
- ---By having less spatial information you gain computation performance

---Less spatial information also means less parameters, so less chance to overfit

---You get some translation invariance

3. Full connection layer

The CNNs help extract certain features from the image , then fully connected layer is able to generalize from these features into the output-space.

[LeCun et al., 1998. Gradient-based learning applied to document recognition.]

Thank you